organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Chun-Hua Diao* and Ming Yu

College of Sciences, Tianjin University of Science and Technology, Tianjin 300222, People's Republic of China

Correspondence e-mail: diao_chunhua@163.com

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.003 Å R factor = 0.048 wR factor = 0.138 Data-to-parameter ratio = 15.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(*E*)-1,5-Dimethyl-4-[3-(2-phenoxyethoxy)benzylideneamino]-2-phenyl-1*H*-pyrazol-3(2*H*)-one

In the title compound, $C_{26}H_{25}N_3O_3$, the central benzene ring makes dihedral angles of 13.93 (7), 54.45 (6) and 80.83 (5)°, respectively, with the pyrazolone ring, the attached phenyl ring and the other terminal phenyl ring. The crystal structure is stabilized by a couple of weak non-classical intermolecular $C-H\cdots O$ interactions, forming an infinite network.

Comment

There has been steady growth of interest in the structure and reactivity of Schiff bases due to their potential biological activities such as antibacterial and antitumor (Klayman *et al.*, 1979). Among the large number of compounds, 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one forms a variety of Schiff bases with aldehydes, and the syntheses and crystal structures of some of them, such as (E)-1,5-dimethyl-4- $\{2-[2-(2-nitro-phenoxy)-ethoxy]$ benzylideneamino}-2-phenyl-1*H*-pyrazol-3(2*H*)-one (Diao & Chen, 2006) (*E*)-4-[3-(4-chlorobenzyl-oxy)-4-methoxybenzylideneamino]-1,5-dimethyl-2-phenyl-1*H*-pyrazol-3(2*H*)-one (Duan*et al.*, 2006), have been reported. We report here the synthesis and structure of the title compound, (I).

In the title molecule (Fig. 1), bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The pyrazolone ring (C16–C18/N1–N3/O3) is nearly planar, with an r.m.s. deviation for fitted atoms of 0.0394 Å. It makes a dihedral angle of 54.99 (6)° with the attached phenyl ring (C21–C26). The central benzene ring (C9–C15/O2) is essentially planar, with

Figure 1 The molecular structure of (I), with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

Received 18 September 2006 Accepted 20 September 2006

© 2006 International Union of Crystallography

All rights reserved

12330 measured reflections 4635 independent reflections 2621 reflections with $I > 2\sigma(I)$

 $w = 1/[\sigma^2(F_0^2) + (0.0654P)^2]$

-3

+ 0.2074P] where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} = 0.002$

 $R_{\rm int} = 0.045$ $\theta_{\rm max} = 26.4^\circ$

Figure 2 Intermolecular hydrogen-bonding interactions (dashed lines) in (I).

an r.m.s. deviation for fitted atoms of 0.0084 Å. It makes dihedral angles of 13.93 (7), 80.83 (5) and 54.45 (6)°, respectively, with the the pyrazolone ring (C16-C18/N1-N3/O3) and the terminal (C1-C6 and C21-C26) phenyl rings.

The crystal structure is stabilized by a couple of weak nonclassical intermolecular $C-H \cdots O$ interactions (Table 1), forming an infinite network (Fig. 2).

Experimental

An anhydrous ethanol solution (50 ml) of 3-(2-phenoxyethoxy)benzaldehyde (2.42 g, 10 mmol) was added to an anhydrous ethanol solution (50 ml) of 4-amino-1,5-dimethyl-2-phenylpyrazol-3one (2.03 g, 10 mmol) and the mixture stirred at 350 K for 5 h under nitrogen, giving a vellow precipitate. The product was isolated, recrystallized from acetonitrile, and then dried in a vacuum to give the pure compound in 85% yield. Yellow single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an acetonitrile solution.

Crystal data

C26H25N3O3 $M_r = 427.49$ Monoclinic, $P2_1/c$ a = 11.3949 (18) Åb = 7.4456 (12) Å c = 26.791 (4) Å $\beta = 95.392 \ (3)^{\circ}$ V = 2262.9 (6) Å³

Z = 4 $D_x = 1.255 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 294 (2) K Block, yellow $0.30 \times 0.24 \times 0.20 \text{ mm}$

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.958, T_{\max} = 0.984$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.138$ S = 0.994635 reflections 291 parameters H-atom parameter

	$\Delta \rho_{\text{max}} = 0.15 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.21 \text{ e } \text{\AA}^{-3}$		
s constrained			

Table T		
Hydrogen-bond	geometry	(Å, °).

	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3 ⁱ 3 ⁱⁱ	0.96 0.93	2.31 2.45	3.137 (2) 3.368 (3)	144 169
3	0.93	2.45	1	5.308 (3)

Symmetry codes: (i) x, y - 1, z; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$.

H atoms were included in calculated positions and refined using a riding-model approximation: C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for Csp^2 ; C-H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene; C-H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms.

Data collection: SMART (Bruker, 1999): cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (1999). SMART (Version 5.0) and SAINT (Version 4.0) for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Diao, C.-H. & Chen, X. (2006). Acta Cryst. E62, 04422-04424.
- Duan, Z.-Y., Zhang, W.-J., Li, G., Han, E.-S. & Du, F.-Y. (2006). Acta Cryst. E62, o2997-o2998.
- Klayman, D. L., Bartosevich, J. F., Griffin, T. S., Mason, C. J. & Scovill, J. P. (1979). J. Med. Chem. 22, 855-862.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.